#### SEISMIC VULNERABILITY ASSESSMENT OF SUBSTATIONS AND POWER TRANSMISSION NETWORK

Dr. Solomon Tesfamariam, PEng Dept. Of Civil and Environmental Engineering





#### **COMPLEX SYSTEM**

#### "As complexity rises, precise statements lose meaning and meaningful statements lose precision."

LOTFI ZADEH





FACULTY OF ENGINEERING



Klir and Yuan (1995)

Seismic vulnerability assessment of substations and power transmission network PAGE 3



FACULTY OF







#### Source of figure: <u>http://www.dpandl.com/education/electricity-information/how-electricity-gets-</u> to-you/

Seismic vulnerability assessment of substations and power transmission network



ENGINEERING

# Seismicity of Canada







#### Figure taken from

#### http://www.bchydro.com/energy in bc/projects/substation.html





#### Multi-fidelity pipe vulnerability assessment



Cornell University Test Setup





High-fidelity Model

**Dey**, S., **Chakraborty**, S. and Tesfamariam, S. 2020. Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model. *Soil Dynamics and Earthquake Engineering*, 135, 106180.



Seisi Dey, S., Chakraborty, S. and Tesfamariam, S. 2021. Multi-fidelity approach for uncertainty quantification of buried pipeline or response undergoing fault rupture displacements in sand. *Computers and Geotechnics*, 136, 104197.

### **Regional seismic vulnerability assessment of pipelines**





#### **Motivation**

#### Losses during Northridge EQ, 1994

- Power disruption lasted about 3 hours (max)
- Direct economic losses \$138 million to Los Angeles department of water and power



### **Motivation**

 A key component of substations is the transformer (60% of the total investment)

• Methods that enable large transformer vulnerability assessment in a practical and rigorous way are scarce

• Study proposes risk assessment using BBN which combines most of the critical failure modes



#### **Transformer failure**





# **TOPOLOGICAL VULNERABILITY ASSESSMENT OF POWER TRANSMISSION NETWORK**

Buriticá Cortés, J.A., Sánchez-Silva, M. and Tesfamariam, S., 2015. A hierarchy-based approach to seismic vulnerability assessment of bulk power systems. Structure and Infrastructure Engineering, 11(10), pp.1352-1368.

Seismic vulnerability assessment of substations and power transmission network PAGE 13





# **Topological importance: Hierarchical representation**

• The use of recursive clustering is proposed to: detect Communities and Communities of communities until the network consists of a single unit.









FACULTY OF ENGINEERING

# **Electrical importance: Drop in net-ability**

• Net-ability is a capacity measure of power flow in a power network. The drop in net-ability constitutes the relative electrical importance:

where

- K(j) = drop in net-ability
- A = global electrical efficiency (net-ability)
- A(j) = efficiency after the removal of element j
- NG = number of generation nodes
- ND = number of transmission and load nodes
- C<sub>ij</sub> = power transmission capability
- $Z_{ij}$  = equivalent impedance

$$K(j) = rac{A - A(j)}{A}$$

$$A = \frac{1}{N_G N_D} \sum_{i \in G} \sum_{j \in D} \frac{C_{ij}}{Z_{ij}}$$



#### **Electrical importance: Drop in net-ability**









#### scenario shake map - PGA at grid









# **Vulnerability**





# Prioritization



# **BAYESIAN BELIEF NETWORK (BBN)**

Seismic vulnerability assessment of substations and power transmission network PAGE 24

### **Bayesian belief network**

BBN is an acyclic directed graph composed by:

• A set of nodes (i.e., variables), with a finite set of states

• A set of directed edges between nodes, that represent probability relations



#### **Design consideration and deterioration**



| Variable              | Variable<br>A <sub>2</sub> | Variable B <sub>3</sub> |                         |                         |
|-----------------------|----------------------------|-------------------------|-------------------------|-------------------------|
| <b>A</b> <sub>1</sub> |                            | Probability             |                         |                         |
|                       |                            | L                       | Μ                       | н                       |
| L                     | L                          | $P(B_3=L A_1=L, A_2=L)$ | $P(B_3=M A_1=L, A_2=L)$ | $P(B_3=H A_1=L, A_2=L)$ |
|                       |                            |                         |                         |                         |
| Н                     | М                          | $P(B_3=L A_1=H,A_2=M)$  | $P(B_3=M A_1=H, A_2=M)$ | $P(B_3=H A_1=H, A_2=M)$ |
| Н                     | Н                          | $P(B_3=L A_1=H,A_2=H)$  | $P(B_3=M A_1=H, A_2=H)$ | $P(B_3=H A_1=H, A_2=H)$ |

Conditional probability table (CPT)



FACULTY OF ENGINEERING

#### **Bayesian belief network**

Employs Bayes' theorem:

$$P(H_{J}|E) = \frac{P(E|H_{j}) \times P(H_{j})}{\sum_{i=1}^{n} P(E|H_{I}) \times P(H_{i})}$$

• H is a hypothesis, E is evidence and P() are probabilities





Tesfamariam, S., Bastidas-Arteaga, E. and Lounis, Z. 2018. Seismic retrofit screening of existing highway bridges with consideration of chloride-induced deterioration: A Bayesian belief network model. *Frontiers in Built Environment: Bridge Engineering*, 4(67), 1-11, doi: 10.3389/fbuil.2018.00067.

### **Design consideration and deterioration**





#### **Design consideration and deterioration**







Franchin, P., Lupoi, A., Noto, F., and Tesfamariam, S. 2016. Seismic fragility of reinforced concrete girder bridges using Bayesian belief network. *Earthquake Engineering & Structural Dynamics*, 45(1), 29–44.









### **BBN FOR SUBSTATION VULNERABILITY ASSESSMENT**

**Siraj**, T., Tesfamariam, S. and Duenas-Osorio, L. 2015. Seismic risk assessment of high-voltage transformers using Bayesian belief networks. *Journal of Structure and Infrastructure Engineering*, 11(7), 929-943.

Seismic vulnerability assessment of substations and power transmission network PAGE 34

| Causes                                                                                                                                | Effects                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <ul> <li>Seismic vibration</li> <li>Soil instability</li> <li>Rocking response</li> <li>Interaction coming from conductors</li> </ul> | -Foundation failure<br>-Anchorage failure<br>-Component failure |
|                                                                                                                                       |                                                                 |





Foundation failure Source : ASCE (1999)

#### Anchorage failure Source : Markis and Black (2001)

Seismic vulnerability assessment of substations and power transmission network





# **Motivation**

#### Component failure

- Radiator failure
- Internal parts malfunctioning
- Conservator failure
- Lightning arrester and tertiary bushing failure
- Porcelain bushing failure, etc.





#### Component failure: Broken transformer bushing Source: Christchurch EQ damage report



# Component failure: Damaged tertiary bushing

Source: ASCE (1999)





Component failure: Conservator support failure



#### Component failure: Damaged control cables of a transformer

Source: ASCE (1999)



Seismic vulnerability assessment of substations and power transmission network

#### **Proposed framework**







FACULTY OF ENGINEERING

### **Ground motion intensity measure**





# Liquefaction







## Interaction coming from conductors (IC)

#### **Required conductor length**



#### **Existing conductor length**





### Interaction coming from conductors (IC)





#### Interaction coming from conductors (IC)

#### **Conditional probability table**

| (EC, RC)                                         | Conductor failure<br>(Unlikely, Likely, Very likely) |
|--------------------------------------------------|------------------------------------------------------|
| (VL <sub>1-150</sub> , VL <sub>1-150</sub> )     | (80, 20, 0)                                          |
|                                                  |                                                      |
|                                                  |                                                      |
| •                                                | •                                                    |
| (M <sub>300-450</sub> , L <sub>150-300</sub> )   | (80, 15, 5)                                          |
| (VH <sub>700-1000</sub> , H <sub>450-700</sub> ) | (75, 20, 5)                                          |





# **Rocking response of transformer (RT)**



Boundaries of rest, slide, and rock modes, for H/B=2 (based on Shenton (1996))



## **Rocking response of transformer (RT)**





## **Vulnerability of transformer**







FACULTY OF ENGINEERING



Seismic vulnerability assessment of substations and power transmission network

FACULTY OF ENGINEERING

### Sensitivity analysis

| Node                                              | Normalized percent<br>contribution |
|---------------------------------------------------|------------------------------------|
| Site to fault distance, d                         | 67.00%                             |
| Earthquake magnitude, M <sub>w</sub>              | 16.12%                             |
| Soil type, S <sub>T</sub>                         | 15.12%                             |
| Existing conductor length, ECL                    | 0.76%                              |
| Total vertical overburden pressure, $\sigma_{vo}$ | 0.44%                              |
| CPT tip resistance, $q_c$                         | 0.24%                              |
| Anchorage                                         | 0.22%                              |
| Width to height ratio of transformer, B/H         | 0.11%                              |
| Average grain size, D <sub>50</sub>               | 0.007%                             |





- ---- Liu et al. (2003), transformer (500kV)
- • Shinozuka et al. (2007), transformer (not enhanced)
- •••••• Eidinger and Ostrom (1994), 165-350kV transformer (unanchored)
- Eidinger and Ostrom (1994), 500kV and higher transformer (unanchored)
- O Obseved probability of failure based on Anagnos (1999) damage data
- BBN based framework



- --- Shinozuka et al. (2007), transformer (50% enhancement)
- • Shinozuka et al. (2007), transformer (100% enhancement)
- •••••• Eidinger and Ostrom (1994), 165-350kV transformer (anchored)
- Eidinger and Ostrom (1994), 500kV and higher transformer (anchored)
- O Obseved probability of failure based on Anagnos (1999) damage data
- BBN based framework



#### PARADOX OF RISK MANAGEMENT

"You always got to be prepared, but you never know for what."





Professor, University Research Chair Civil and Environmental Engineering University of Waterloo Waterloo, ON Solomon.Tesfamariam@uWaterloo.ca



# UNIVERSITY OF WATERLOO



#### FACULTY OF ENGINEERING

YOU+WATERLOO

Our greatest impact happens together.